Transformer les données avec data.table : : compeENDIUM

Les bases

data.table est un package trés rapide et performant en gestion
de la mémoire pour transformer des données avec R avec une
syntaxe concise. |l convertit les objets data.frame natifs de R
en data.table avec des fonctionnalités nouvelles et étendues.
Les bases pour utiliser data.table sont:

dt[i, j, by]

Objet data.table dt,
Extraction des lignes avec i
et manipulation des colonnes avec j,
avec un regroupement selon by.

Les data.tables sont aussi des data.frames — les fonctions qui
operent sur des data.frames sont utilisables sur les data.tables.

Créer un data.table

data.table(a = c(1, 2), b = c("a", "b")) — crée un data.table en
partant de rien. Similaire a data.frame().

setDT(df)* ou as.data.table(df) — convertit un data.frame ou
une liste en data.table.

Extraire des lignes avec i

> di[1:2] — extraire les lignes en fonction des
numéros de lignes.

a | di[a > 5] — extraire les lignes en fonction
6 des valeurs contenues dans une ou
plusieurs colonnes.

OPERATEURS LOGIQUES A UTILISER DANS i

is.na() %in% | %like%
lis.na() ! & %between%

< <=
> >=

Manipuler les colonnes avec |

EXTRAIRE
| | dt, c(2)] — extraire des colonnes par numéro.
Préfixer avec “-” les numéros des colonnes a
ignorer.
[E , B dif, .(b, c)] — extraire les colonnes par leur
nom.
SOMMER
| Ny x | di[, .(x = sum(a))] — créer un data.table avec de
nouvelles colonnes basées sur le total des
valeurs des lignes.
Les fonctions de sommation telles que mean(),
median(), min(), max(), etc. peuvent étre
_____________________________ utilisées.
CALCULER DES COLONNES*
> c| dt[, ¢ := 1 + 2] — calculer une colonne sur la
3 base d’une expression.
3
a] I [c| dtfa == 1, ¢ := 1 + 2] — calculer une
2 2 NA colonne sur la base d’une expression, mais
1 il S seulement sur un sous-ensemble de lignes.
. [EE dif, :="(c =1, d = 2)] — calculer plusieurs
1.2 colonnes sur la base d’expressions
172 distinctes.

SUPPRIMER UNE COLONNE
Q.

dt[, ¢ := NULL] - supprimer la colonne c.

CONVERTIR LE TYPE D’UNE COLONNE

b B [b] dt[, b := as.integer(b)] — convertir le type
1.5 1 d’une colonne en utilisant as.integer(),
2.6 2 as.numeric(), as.character(), as.Date(), etc..

Grouper avec by

A Ny a| g 2| dt[, j, by = .(a)] — grouper les
lignes par valeurs des colonnes
indiquées.

mmm "
di[, j, keyby = .(a)] — grouper et
=== === trier simultanément les lignes par

valeur des colonnes indiquées.

OPERATIONS COMMUNES DE GROUPEMENT

dt[, .(c = sum(b)), by = a] — sommer les lignes par groupe.

di[, ¢ := sum(b), by = a] — créer une nouvelle colonne et
calculer les lignes dans chaque groupe.

dt[, .SD[1], by = a] — extraire la premiére ligne de chaque
groupe.

dt[, .SD[.N], by = a] — extraire la derniére ligne de chaque
groupe.

Chainage

dt[...][...] — réaliser une séquence d’opérations sur data.table
en chainant plusieurs “[]”.

Fonctions pour les data.tables

RIER
alb| BNgalb setorder(dt, a, -b) — trier un data.table en
12 12 fonction des colonnes indiquées. Préfixer
22 11 les noms des colonnes avec “-” pour trier
11 22 dans I'ordre descendant.

* FONCTIONS SET ET :=

Les fonctions de data.table préfixées par “set” et I'opérateur
“:=" fonctionnent sans affectation avec “<-” pour modifier les
données sans faire de copies en mémoire. Par exemple la
fonction “setDT(df)” est plus efficace que l'instruction
analogue “df <- as.data.table(df)”.

Créé par Erik Petrovsky et Mara Destefanis — maragdestefanis@gmail.com « Traduit par Christian Wiat — w9204-rs@yahoo.com « Voir la page d’accueil ou la vignette de data.table « data.table version 1.17.8 « Mise-a-jour: 2025-07 « traduction 2025-09

LIGNES UNIQUES

an N an unique(dt, by = ¢(a’, b")) — extraire des

B 12 lignes uniques basées sur les colonnes

22 22 spécifiées dans “by”. Ne pas utiliser “by” pour
12 avoir toutes les colonnes.

uniqueN(dt, by = ¢("a", "b")) — compter le nombre de lignes
uniques basées sur les colonnes spécifiées dans “by”.

RENOMMER DES COLONNES
Bl |, Bn

setnames(dt, ¢("a", "b"), c("x", "y")) — renommer
les anciennes colonnes (a, b) en (X, y)-

DEFINIR DES CLES

setkey(dt, a, b) — définir des clés pour permettre des
recherches rapides et répétées dans les colonnes spécifiées en
utilisant “dt[.(value),]” ou pour fusionner sans indiquer les
colonnes a utiliser avec “dt_a[dt_b]".

Combiner des data.tables

JOINTURE

b ly| b dt_a[dt_b, on = .(b = y)] — combiner
1c¢ + 3 b 3b3 lesdata.tables surla base des lignes
2 a 2¢c —1c2 (égalesvaleurs.
3b 18 BEEE

blc] ly|z] b|c] dt_afdt b,on=.(b=y,c>2)]
i @7 " 3b4 3 b438 —combinerles data.tables sur
2ab 2c¢c5 T~ 1¢52 Jabasedes lignes de valeurs
3b6 1a8 NAa8 1 gqgales et différentes.
JOINTURE GLISSANTE

lid| id| date |

1 A01-01-2010 4 1 A 01-01-2013 — 2 A 01-01-2013 1
2 A01-01-2012 1 B 01-01-2013 2 B 01-01-2013 1
3 A 01-01-2014
1 B 01-01-2010
2 B 01-01-2012

dt_a[dt_b, on = .(id = id, date = date), roll = TRUE] — combiner
les data.tables pour les lignes qui correspondent dans les
colonnes id, mais ne garder que la correspondance précédente
la plus récente avec la data.table de gauche en fonction des
colonnes de date. Utiliser “roll = -Inf” pour inverser la direction.

LIER
EHIE BB rbind(dt_a, dt_b) — combiner les lignes
= de deux data.tables.
[x]y]| FAf7 cbind(dt_a, dt_b) — combiner les
+ _ colonnes de deux data.tables.

Restructurer un data.table

RESTRUCTURER EN LARGEUR

MEE | B dcast(dt,

Ax 13 A1 2 3 4 id~y

Bx13 B 1 2 3 4 ’
T T T value.var = c("a", "b"))
Bz 24

Restructurer une data.table d’un format long en format large.
dt Un data.table.

id~y Formule avec pour le membre de gauche : colonnes
ID contenant les IDs d’entrées multiples. Et pour
membre de droite : les colonnes avec les valeurs a
distribuer dans I'entéte des colonnes.

value.var Colonnes des valeurs a mettre dans les cellules.

RESTRUCTURER EN LONGUEUR
mmmm HHE melt(dt,

A1 2 3 measure.vars = measure (
B 1 2 3 4 value.name, y, sep="_")

EU)>EU>
N N X

1
2
2

S s ww

)

Restructurer un data.table d’un format large en format long.

dt Un data.table.

measure.vars Colonnes des valeurs a mettre dans les cellules,
souvent en utilisant measure() ou patterns().
Vecteur de caracteres des noms des colonnes ID
(optionnel).

variable.name,

value.name Noms des colonnes de sortie (optionnel).
measure(out_name1l, out_name2, sep="_", pattern="([ab])_(.*)")
sep(séparateur) ou pattern (expression reguhére) utilisés pour
spécifier les colonnes a restructurer en analysant les noms des
colonnes d’entrée.

out_name1, out_name2: noms des colonnes de sortie (crée une
colonne a valeur unique), ou value.name (crée des colonnes de
valeurs pour chaque partie unique du nom de la colonne
restructurée).

id.vars

Fonction appliquée
aux colonnes

APPLIQUER UNE FONCTION A PLUSIEURS COLONNES

EBB® | BB dt], lapply(.SD, mean), .SDcols = ¢("a", "b")] -
14 2.5 appliquer une fonction — telle que mean(),
g g as.character(), which.max() — aux colonnes

indiquées dans .SDcols avec lapply() et le
symbole .SD . Fonctionne aussi avec les
groupes.

cols <- c("a"

di[, pasteO(cols, "_m") := lapply(.SD, mean),
.SDcols = cols] — appliquer une fonction aux
colonnes indiquées et assigner le résultat avec
les noms des variables suffixés aux données
originales.

Lignes séquentielles

IDS DE LIGNES

A di, c :=1:.N, by = b] — évaluer, au sein des
groupes, une colonne avec des IDs de lignes
séquentielles.

di[, ¢ := shift(a, 1), by = b] — dupliquer, au
NA sein des groupes, une colonne avec les lignes
1 suivantes de la valeur spécifiée.

i dt, ¢ := shift(a, 1, type = "lead"), by = b] -
dupliquer, au sein des groupes, une colonne
avec les lignes précédentes de la valeur
spécifiée.

Lire & écrire des fichiers

IMPORTER

fread("file.csv") — lire les données d’un fichier de type .csv ou
tsv, dans R.

fread("file.csv", select = c("a", "b")) — lire des colonnes
spécifiques d’un fichier dans R.

EXPORTER
fwrite(dt, "file.csv") — écrire les données dans un fichier depuis
R.

Créé par Erik Petrovsky et Mara Destefanis — maragdestefanis@gmail.com « Traduit par Christian Wiat — w9204-rs@yahoo.com « Voir la page d’accueil ou la vignette de data.table « data.table version 1.17.8 « Mise-a-jour: 2025-07 « traduction 2025-09

